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Abstract
We present new results of point-contact Andreev-reflection (PCAR) spectroscopy in
single-phase Mg1−xAlx B2 single crystals with x up to 0.32. Fitting the conductance curves of
our point contacts with the two-band Blonder–Tinkham–Klapwijk model allowed us to extract
the gap amplitudes �σ and �π . The gap values agree rather well with other PCAR results for
Al-doped crystals and polycrystals up to x = 0.2 reported in the literature, and extend them to
higher Al contents. In the low-doping regime, however, we observed an increase in the small
gap �π on increasing x (or decreasing the local critical temperature of the junctions, T A

c ) which
is not as clearly found for other samples. On further decreasing T A

c below 30 K, both the gaps
decrease and, up to the highest doping level x = 0.32 and down to T A

c = 12 K, no gap merging
is observed. A detailed analysis of the data within the two-band Eliashberg theory shows that
this gap trend can be explained as being mainly due to the band filling and to an increase in the
interband scattering which is necessary to account for the increase in �π at low Al contents
(x < 0.1). We suggest interpreting the following decrease of �π for T A

c < 30 K as being
governed by the onset of the inhomogeneity and disorder in the Al distribution that partly mask
the intrinsic effects of doping and are not taken into account in standard theoretical approaches.

1. Introduction

As is well known, the superconductivity of MgB2 is
characterized by two distinct energy gaps due to the presence
of various bands crossing the Fermi level (generally grouped
in two systems: the 3D π bands and the 2D σ bands) and to
the exceedingly small quasiparticle scattering between these
bands. The values of the gaps measured in pure MgB2 by many
different techniques agree very well with those calculated
within the two-band models in the BCS [1] or Eliashberg
approach [2]. The multi-band nature of MgB2 allows
explaining most of its features—in particular, the relatively
high critical temperature and its unexpected robustness against

sample quality—but also hugely increases the complexity of
the effects that can arise when the system is in some way
‘perturbed’.

A particularly interesting and debated point in the physics
of MgB2 is the possibility of attaining the so-called ‘gap
merging’, i.e. the complete isotropization of the compound
with consequent collapse of the two gaps in a single gap with
BCS character [1]. Within the two-band Eliashberg theory,
the gap merging can be attained, for example, by keeping
all the parameters as for pure MgB2 and only increasing
the interband scattering rate, γσπ . The two gaps approach
each other asymptotically as a function of γσπ , while the
critical temperature is reduced; for sufficiently high values
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of this parameter (>50 meV), one expects the two gaps to
be virtually indistinguishable. The critical temperature of
‘isotropic’ MgB2 varies between 19 and 26 K, depending on
the calculations [1, 2]. Actually, such values of γσπ are
not physical since it is practically impossible to increase the
interband scattering without affecting other parameters of the
material, namely the partial DOS of the σ or π bands. This is
true for chemical substitutions in MgB2, e.g. of carbon at the
B site and aluminum at the Mg site [3], but also, unexpectedly,
for neutron irradiation [4]. Generally speaking, the coexistence
of various effects makes it difficult to experimentally single out
their contributions. Fortunately, pair breaking from interband
scattering gives rise to peculiar effects so that it can be
separated rather easily from other sources of Tc reduction: γσπ

suppresses Tc and the large gap �σ , simultaneously increasing
the smaller gap �π .

In a theoretical paper by Erwin and Mazin [5], Al
substitution at the Mg site was proposed as an effective way
to increase the scattering between bands. First-principles
calculations gave, for 2% of Al, a value of γσπ = 1.1 meV,
which is already expected to have measurable effects on
the critical temperature and on the gaps [5]. This made
the Mg1−xAlx B2 system the most likely candidate for the
attainment of the gap merging.

In the past few years, many experimental efforts have been
made to test these predictions. Aluminum substitution was
indeed one of the first successfully achieved in MgB2 [3]. Al
atoms in MgB2 are almost completely ionized, exactly like the
Mg atoms that they replace. Aluminum is thus a donor and
the three electrons in its outer shell enter the system of bands
giving rise to electron doping. The effects of the substitution
on the lattice are rather complicated by a strong tendency to
the formation of different phases. Early reports [3] showed
the presence of two phases with AlB2 structure and different c
axes in polycrystalline samples of nominal Al content between
0.1 and 0.25. A similar result was found for single crystals
grown at ETH (Zurich) by means of a high-pressure, cubic
anvil technique. In this case, the precipitation of a non-
superconducting MgAlB4 phase was observed for x > 0.1
by means of high-resolution TEM and other structural analysis
techniques [6]. An independent, indirect confirmation for this
picture came from point-contact Andreev-reflection (PCAR)
measurements that we performed on those single crystals,
which showed an anomalous trend of the gaps �σ and �π as a
function of the Al content [6, 7], with a crossover between two
regimes around x = 0.1. For x < 0.1, the large gap decreased
linearly with x while the small gap showed a pronounced
tendency to increase, as theoretically expected [5]. For x >

0.1, �σ was found to saturate at about 4 meV, while �π was
fast suppressed, becoming smaller than 1 meV at x = 0.2.
An analysis of the data within the two-band Eliashberg theory
showed that the trend observed for x > 0.1 could be explained
by a decrease in the π band superconducting coupling, that
we argued could be related to the precipitation of the spurious
phase [6].

These anomalies were not confirmed by successive
measurements we performed on polycrystalline Mg1−xAlx B2

samples grown in Genova [8] that did not suffer from

extended phase segregation even at high Al contents (x =
0.2). In fact, the growth technique involved a very
long high-temperature reaction (100 h at 1000 ◦C) and no
evidence of spurious phases was found by means of XRD—
even though successive microprobe analyses (wavelength-
dispersive x-ray spectroscopy, WDX) showed a small amount
(4% of the volume at most) of a secondary phase in the
form of micrometer-size islands embedded in a (Mg, Al)B2

matrix [9] that were concluded to have negligible effect
on the superconducting properties. PCAR measurements
that we carried out on these polycrystals showed an almost
linear decrease of both �σ and �π as a function of the
Al content which turned out to be in qualitative agreement
with the findings of specific-heat measurements on the
same samples [8] as well as with the results of PCAR
measurements on crystals and polycrystals carried out by other
groups [10, 11]. In all these cases, no gap merging was
observed up to x = 0.2, but its occurrence at a higher Al
content (corresponding to Tc around 12 K) [10] was apparently
suggested by the overall gap trends.

Recently, new Mg1−xAlx B2 crystals have been grown at
ETH that do not show phase segregation up to x = 0.32. In
this paper we present the results of PCAR measurements on
this new generation of single crystals, and compare them to the
results of PCAR studies on polycrystals grown in Genova [8]
as well as to other data in the literature [10–12]. We will show
that: (i) our data extend previous results for single crystals [10]
up to the region of extremely high doping; (ii) our data differ
from most of the results in the literature in the low-doping
region, where we observe a much more marked increase in
the small gap �π on increasing x ; once reported as a function
of the critical temperature of the junctions, T A

c , the values
of �π reach a maximum around T A

c = 30 K and then start
to decrease; (iii) this trend nicely agrees with that observed
from specific-heat measurements on high-quality polycrystals
free of compositional gradients [12]; (iv) our data show no
gap merging up to x = 0.32 and down to T A

c = 12 K.
We will also show that the trend of the gaps in our single
crystals can be well explained within the two-band Eliashberg
theory as being due to the band filling (which is the dominant
effect of Al doping) and to a substantial increase in interband
scattering in the low-doping region (x < 0.1). This intrinsic
effect of Al doping explains the observed initial increase in
�π on increasing x , while for x > 0.1 other phenomena,
e.g. inhomogeneities in the dopant distribution—witnessed by
a sudden increase in the superconducting transition width—
may combine in making the gaps decrease again. In this range
of doping, all the theoretical models that do not take into
account inhomogeneity and disorder should be used with some
caution as their predictions might not reflect actual properties
of the compound.

2. Experimental details

2.1. The samples

Mg1−x AlxB2 single crystals were grown by using the high-
pressure cubic anvil technique described elsewhere [13, 14],
starting from pure B powder and a Mg–Al alloy and tuning
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(a)  (b) 

Figure 1. (a) The reconstructed h0l reciprocal space section of the AN394/5 sample (x = 0.24). (b) The reconstructed hk0 reciprocal space
section of the AN412/5 sample (x = 0.32).

(This figure is in colour only in the electronic version)

time, pressure and temperature to eliminate phase segregation.
As usual, the Al content was determined by means of energy-
dispersive x-ray analysis (EDX) and ranged between 0.02
and 0.32. A thorough characterization of the structural,
morphological, chemical and superconducting properties was
performed, by using the techniques described in [6]. In
particular, the quality of the crystals was checked by means
of XRD using a x-ray diffractometer equipped with CCD area
detector (Xcalibur PX, Oxford Diffraction), which allowed
us to examine the whole reciprocal space (Ewald sphere)
for the presence of other phases or crystallites with different
orientation. No additional phases (impurities, twins or
intergrowing crystals) were detected by examination of the
reconstructed reciprocal space sections. This is clearly seen
by comparing figure 1 of this paper to figure 5 of [6].

The crystals revealed MgB2 structure [15]. The structure
refinement results for two samples with high Al content are
presented in table 1. Because Al and Mg have almost
the same amount of electrons (12 and 13 respectively) the
refinement was performed without Al and the position of Mg
was considered to be occupied by both atoms. The presented
refinement results for two highly doped samples and their
reconstructed reciprocal space sections show that the crystals
chosen for subsequent PCAR analysis are of a high quality
and satisfy the requirements for single crystals. On the basis
of these data, we can exclude the influence on measured
properties of some possible factors like polycrystallinity,
additional phases, strong disorder etc.

Figure 2 shows the relation between the Al content and
the bulk Tc given by DC susceptibility for our single crystals
(black circles). The critical temperature was defined here as
the abscissa of the intersection between the y = 0 axis and
the linear fit of the susceptibility versus T in the region of the
transition. The transition width δTc (defined as T10% − T90%)
increases on increasing the Al content, from 0.77 K for the
crystal with x = 0.02 up to about 9 K for the most heavily
doped sample (x = 0.32). The large values of δTc for heavily
doped samples can be related to the local inhomogeneity in the

Figure 2. Bulk critical temperature Tc measured as a function of the
aluminum content x . •: data obtained for our single crystals by
means of DC susceptibility [6]. �: data from [10], obtained for
single crystals by specific heat measurements. �: data from DC
susceptibility of long-annealed polycrystals [18].

dopant content [9, 16], and to the smallness of the coherence
length ξ that allows inhomogeneities on a scale of the order
of ξ to be resolved [17]. A contribution from the simple
disorder consequent on Al doping may be present as well, but
other sources of broadening are either negligible or excluded
by the single-crystal nature of our samples. For instance, due
to the small DC field used in the magnetization measurements
(2–5 Oe), effects related to the magnetic field are certainly
small. It will be clear in the following that the inhomogeneous
distribution of Al in the crystals does not invalidate the results
of local measurements such as PCAR spectroscopy, provided
that the gap amplitudes are reported as a function of the local
critical temperature in the region of the contact and not as a
function of the (average) Al content or of the bulk Tc.

2.2. Point-contact Andreev-reflection measurements

Before starting with the point-contact measurements, we
cleaned the crystals and etched their surfaces by dipping them
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Table 1. Structure refinement and crystal data for Al-doped MgB2 samples AN394/5 and AN412/5.

AN394/5 AN412/5

Empirical formula (MgAl)0.94B2 (MgAl)B2
Temperature (K) 295(2)
Wavelength (Å/radiation) 0.71073/Mo Kα
Diffractometer Oxford diffraction 4-circle

diffractometer (CCD detector)
Crystal system Hexagonal
Space group P6/mmm
Unit cell size (Å) a = 3.0787(4) a = 3.0673(5)

c = 3.5198(4) c = 3.4258(5)

Unit cell volume (Å
3
) 28.892(6) 27.913(8)

Z 1
Absorption correction type Analytical
Crystal size (mm) 0.33 × 0.15 × 0.03 0.31 × 0.22 × 0.02
Theta range (deg) 5.79–36.13 7.69–33.05
Limiting indices −5 � h � 4 −4 � h � 3

−3 � k � 4 −4 � k � 2
−5 � l � 5 −2 � l � 5

Reflections collected/unique 204/46, Rint = 0.0364 156/37, Rint = 0.0179
Refinement method Full-matrix least squares on F2

Data/restraints/parameters 46/0/6 37/0/6
Goodness of fit on F2 1.005 1.071
Final R indices (l > 2σ(l)) R1 = 0.0243, wR2 = 0.0611 R1 = 0.0162, wR2 = 0.0409
R indices (all data) R1 = 0.0324, wR2 = 0.0620 R1 = 0.0174, wR2 = 0.0411

�ρmax,�ρmin (e/Å
3
) 0.354 and −0.350 0.222 and −0.247

Fractional atomic coordinates and atomic displacement parameters (Å
2
)

B x = 1/3; y = 2/3; z = 1/2
(Mg, Al) x = 0; y = 0; z = 0
U11, B 0.010(1) 0.007(1)
U33, B 0.014(1) 0.010(1)
U12, B 0.005(1) 0.003(1)
U11, (Mg, Al) 0.009(1) 0.008(1)
U33, (Mg, Al) 0.012(1) 0.008(1)
U12, (Mg, Al) 0.005(1) 0.004(1)

into a solution of 1% HCl in dry ethanol. After 2–5 min,
we rinsed the crystals in pure ethanol and dried them with
nitrogen. The point-contact measurements were performed by
using the ‘soft’ technique described elsewhere [19]. Instead
of pressing a metallic tip against the sample as in standard
PCAR, we made the contact by using as a counterelectrode
a small spot of Ag conductive paint. This pressureless
technique can be used also on brittle samples and, for thin
single crystals, allows injecting the current (mainly) along
the ab planes [19], so as to measure both the σ and π

band gap at the same time [20]. The diameter of the Ag-
paint spot is typically ∅ � 50 μm which, however, does
not correspond to the actual size of the point contacts. As
a matter of fact, parallel microjunctions are very likely to
form, between the crystal surface and the Ag particles in
the paint within the macroscopic contact area, so that the
measured I –V characteristics and conductance curves should
be regarded as an average over a certain region in direct
space. Usually, the potential barrier at the N/S interface is
rather low, so the contacts are in the Andreev-reflection regime.
Otherwise, the characteristics of the contact and its normal-
state resistance can be tuned by using short voltage or current
pulses [4, 19]. The formation or modification of contacts
with the help of electric pulses is well known in standard

electrotechnics [21]. It was also used, as early as the 1970s,
to create point contacts for phonon spectroscopy in normal
metals [22] or high-quality Josephson contacts between two
superconductors [23]. During a voltage pulse (in our case of
the order of 1 V for some milliseconds), the contact region can
be heated well above the bath temperature. This phenomenon
was shown to give rise to local annealing in heavily neutron-
irradiated MgB2 [4], but in the present case this drawback can
be ruled out because the crystals are already well annealed [6]
and no enhancement of the local Tc above the bulk value has
ever been observed.

Figure 3 shows two examples of raw conductance curves
measured for the crystals with x = 0.24 and 0.32 as a
function of temperature. A subset of the complete series is
shown for clarity. The values of the normal-state resistance
of the junctions are RN = 120 
 and RN = 178 
,
respectively. Such high values of RN are necessary for
fulfilling the conditions for ballistic transport through the
junction [24], because of the shortening of the mean free
path due to Al doping. Let us suppose for a moment that
a single contact is established between the crystal and a Ag
grain in the paint; then the whole resistance is due to this
single contact and, using the residual resistivity of the most
heavily doped crystal (ρ0 � 5 μ
 cm), the relationship
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Figure 3. Temperature dependence of the conductance curves of two
point contacts on crystals with x = 0.24 (a) and 0.32 (b). A subset of
the complete series is shown for clarity. The temperatures are
indicated in the labels. The bottom curve in each panel is the
normal-state conductance and the temperature at which it is reached
is defined as the Andreev critical temperature T A

c .

between ρ0 and the mean free path � reported in [25], and
the Sharvin formula [24], one can evaluate the contact radius
a from the contact resistance. If RN � 180 
 the result
is a � 11 Å which is indeed much smaller than the mean
free path � � 100 Å. This ensures ballistic transport even
if a single contact is established between the sample and
counterelectrode. If several contacts are present, as probably
happens in our case, each of them has higher resistance
than the parallel contact as a whole and is thus certainly
ballistic.

The temperature at which the Andreev-reflection features
disappear and the normal-state conductance is recovered will
be in the following referred to as the local critical temperature
of the contact, or the ‘Andreev critical temperature’ T A

c . The
values of T A

c are reported in figure 3 for both contacts.
For doped samples, because of the local inhomogeneity in
the Al content, different contacts on the same sample can
provide different gap amplitudes and different T A

c . All
the values of T A

c are included between the onset and the
completion of the magnetic transition, so that for samples
with a wide superconducting transition (especially the most
heavily doped ones) values of T A

c substantially smaller than
the bulk Tc can be obtained. For these reasons, T A

c is more
appropriate than the bulk Tc for describing the properties of the
contact.

Figure 4. Normalized low-temperature conductance curves for
crystals with different Al contents from x = 0 to 0.32. The Andreev
critical temperature T A

c and the normal-state resistance RN of each
contact are also indicated. Circles: experimental data. Solid (dashed)
lines: best-fitting curves obtained within the two-band (single-band)
BTK model.

3. Results

Figure 4 shows the conductance curves G(V ) = dI/dV of ab-
plane contacts in single crystals with different Al contents x
from 0 up to 0.32. All the curves are normalized, i.e. divided
by the normal-state conductance (measured at T = Tc or in a
magnetic field H = Hc2). The rather small amplitude of the
normalized conductance curves is related to the ‘soft’ point-
contact technique that we use. In particular, it is due to a very
thin (smaller than the coherence length ξ ) impurity layer on
the surface of the Ag grains in the paint, which gives rise to
inelastic scattering at the interface. As shown in [26], this
effect does not affect the measured gap values and can be
accounted for by simply inserting an extrinsic broadening in
the BTK fit of the conductance curves (see appendix A).

To obtain the gap values, we fitted the experimental curves
with the two-band BTK model in which the conductance G
of the junction is a weighed sum of Gσ and Gπ : G =
wπ Gπ + (1 − wπ)Gσ [20]. Gσ and Gπ depend on the
relevant gap amplitude (�σ or �π ), on the effective potential
barrier parameter (Zσ or Zπ ), and on a broadening parameter
(�σ or �π ), in conformity with the conventional BTK
model [27] modified by including the effect of the quasiparticle
lifetime [28, 29] (for further details, see appendix A). The two-
band BTK best-fitting curves are indicated in figure 4 as solid
lines.

In the low-doping regime (up to x = 0.15) there is no
point in comparing the two-band BTK fit with the single-band
one; the latter is always of poor quality and does not reproduce

5
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Figure 5. Magnetic field dependence of the conductance curves for
the crystals with x = 0.24 (a) and 0.32 (b). The magnetic field was
applied parallel to the ab plane. Vertical lines indicate the shift in the
position of the peaks.

the position of the peaks and the width of the Andreev features.
However, for the most heavily doped samples (where, in
principle, a gap merging could occur) this comparison cannot
be omitted. As a matter of fact, dashed lines in the two bottom
panels of the same figure represent the single-band BTK curves
that best fitted the experimental conductance curves. As
discussed in appendix A, the two-band fit is always preferable
(even in the x = 0.32 case, where the two theoretical curves
are very similar to each other) on the basis of a statistical Fisher
F-test. This would lead to the conclusion that two gaps are
always present in the Al-doped crystals, even at the highest
doping content.

However, the most reliable test for the actual presence of
two gaps consists in studying the magnetic field dependence
of the conductance curves, owing to the faster suppression of
the π band gap by the magnetic field [30]. For pure MgB2,
this technique allowed us to separate the partial σ and π band
conductances and to fit each of them with a standard, three-
parameter BTK model [19, 30]. For doped samples, a complete
separation is not always possible but, if two gaps are present,
an outward shift of the conductance maxima is observed at a
certain magnetic field, when the σ band conductance becomes
dominant. Figure 5 reports the magnetic field dependence of
the conductance curves of the two contacts for the most heavily
Al-doped crystals (x = 0.24 and 0.32) whose temperature
dependences have been already shown in figure 3. Vertical
lines indicate the maximum shift of the conductance peaks, that

Figure 6. (a) Energy gap amplitudes �σ (◦) and �π (•) measured
using PCAR in single crystals, as a function of the Al content
determined using EDX. Error bars indicate the uncertainty on the gap
values for a given curve. (b) The same values as a function of the
critical temperature of the contact T A

c . The gaps (obtained using
PCAR) from [8] (squares), [10] (triangles) and [11] (down triangles)
are also reported for comparison. The dashed lines are only guides to
the eye, while the straight gray line in (b) indicates the BCS � versus
Tc dependence.

witnesses the presence of two gaps (rather close to each other)
and justifies the two-band BTK fit reported in the two bottom
panels of figure 4.

The gap amplitudes �σ and �π given by the two-band fit
of the conductance curves of our point contacts in Al-doped
single crystals (of which figure 4 showed a subset) are reported
as a function of the Al content x in figure 6(a). The vertical
spread of data for each doping content gives an idea of the
variation in the local gap values in different contacts on the
same crystal. The trend of the gaps �σ and �π is however
clear: the large gap monotonically decreases on increasing x
over the whole doping range, while the small gap first slightly
increases—reaching a maximum of 3.1 meV at x = 0.08—
and then starts to decrease. For x > 0.15, the slopes of the two
curves are apparently the same.

The vertical dispersion of data can be partly removed
by plotting the gaps as a function of the critical temperature
of the contacts, T A

c , as in figure 6(b). The same figures
also report other PCAR data from the literature, obtained
by us for polycrystals [8] (squares) and by other groups for
single crystals [10] (up triangles) and polycrystals [11] (down
triangles). Recent STM measurements of the π band gap in
crystals grown at ETH substantially agree with these data [31].

6
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In the high-doping region (T A
c < 25 K) all the data

sets agree very well with one another independently of
the nature of the samples. In particular, our data nicely
extend the curves previously obtained for single crystals by
Klein et al down to very low critical temperatures (well
below the theoretical limit for gap merging in the hypothesis
of pure interband scattering [1, 32]). In the low-doping
region, a substantially common trend is observed for the
large gap �σ , although our data (both for crystals and
for polycrystals) are a little higher than those reported in
the literature [10, 11]. One may wonder whether this
shift is related to the ‘soft’ PCAR technique. This is not
the case, since for pure MgB2 we obtained gap values in
excellent agreement with those shown here (at the highest
T A

c ) also by means of standard PCAR measurements with
Au or Pt tips [33]. Whatever its origin, this shift makes
our values for �σ and �π fall above and below the BCS
value (straight line in figure 6(b)), respectively, while in
many data reported in the literature, �σ is very close to the
BCS line or even falls below it. A similar effect has been
recently observed for heavily neutron-irradiated MgB2, but
in that case it can be somehow related to the high level of
disorder, on the basis of analogous evidence for conventional
superconductors. Here, this anomaly is very difficult to explain
theoretically—and is certainly beyond current models for two-
gap superconductivity.

As far as the small gap �π is concerned, our data show
that, in the low-doping region, it increases on increasing the Al
content, reaching a maximum around T A

c = 30 K. This effect
is quite definitely assessed by the measurements we expressly
carried out on crystals with x = 0.02 and 0.034. Such a
tendency is also present in the specific heat data from [12]
and, although much smaller, in the data from [10] and [11]
as well as in the results of specific heat measurements on
polycrystals from Genova [8, 34]. The tendency of the small
gap to increase was recognized in [18] as an intrinsic effect
of Al doping, more evident for samples produced via a long
reaction at high temperature so as to reduce the strain and the
inhomogeneity in the Al content. The much greater increase
in �π at low doping content in the single crystals grown at
ETH (similar to that of samples of the ‘B’ series in [18])
might then be related to the absence of lattice strain due to
compositional gradients, also witnessed by the rather sharp
transition of the crystals in this range of doping levels. If this
picture is valid, the increasing inhomogeneity of the crystals
on increasing x might be responsible for the fact that, for
T A

c < 25 K, the small gap of these single crystals returns onto
the same curve as is described by the values of �π for the other
samples.

4. Discussion

We tried to interpret the trend of the gaps as a function of
the local critical temperature within the two-band Eliashberg
theory. A model for the effect of Al doping on the gaps of
MgB2 was given by Kortus et al [32] who solved the two-band
Eliashberg equations scaling the Eliashberg functions by the
change of the DOS alone. The same approach was used in [35]

Figure 7. Main panel: energy gap amplitudes for our Al-doped
MgB2 single crystals (•,◦) as a function of the Andreev critical
temperature T A

c . Gap amplitudes from other PCAR measurements
are reported for comparison (squares [8], up triangles [10] and down
triangles [11]). Lines indicate the predictions from Eliashberg theory,
when only the DOSs are changed according to the band filling due to
electron doping (- - - -), and when a proper increase in the interband
scattering at intermediate doping levels is also included in the model
(——). The straight gray line represents the values of a BCS gap.
Inset: doping dependence of the gaps in our single crystals,
compared to the Eliashberg curves (DOSs + interband scattering).

to explain the x dependence of the critical temperature for Al-
doped MgB2. This model has no free parameters as long as
one takes the interband scattering rate to remain negligible, as
it is for pure MgB2 (see appendix B for the explicit Eliashberg
equations and the details of the model). However, even in this
case it proved sufficient to qualitatively explain the previous
experimental data for the gaps in Al-doped MgB2 [6, 34] as
a function of the critical temperature, thus indicating that the
changes in the σ and π band DOS are by far the dominant
effect of Al doping.

Dashed lines in figure 7 do indeed represent the
dependences on T A

c of the gaps �σ and �π that we
calculated within the two-band Eliashberg theory following the
aforementioned approach [32, 35] and using the DOSs Nσ (EF)

and Nπ (EF) from first-principles calculations [36]. It is clearly
seen that the dashed lines already reproduce rather well the data
that we obtained using PCAR in polycrystals [8] (squares) and
those reported in [10] and [11]. As far as the PCAR data for
our single crystals are concerned (circles in figure 7), it is clear
that the large gap would be perfectly compatible with the DOS
scaling alone (dashed lines), while the small gap is definitely
not. As a matter of fact, the initial marked increase in �π

on decreasing T A
c requires some additional ingredient in the

model. According to the discussion of 1 and to the predictions
of [5], this immediately suggests an increase in the interband
scattering parameter γσπ due to the Al doping (incidentally,
let us recall that the intraband scattering parameters, which
certainly increase with x , are however ineffective in changing
the gap(s), according to Anderson’s theorem; strictly speaking,
this is only true as long as the doping content is small so that the
perturbative description of the doped compound is possible).

7
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By taking γσπ as the only adjustable parameter4 and using the
calculated DOS (as we did for the dashed lines in figure 7),
we were able to reproduce both the critical temperature and the
gap values of our single crystals. The resulting curves for �σ

and �π are shown as solid lines in figure 7.
To obtain these curves, a non-monotonic dependence of

γσπ on T A
c was necessary. γσπ initially increases (almost

quadratically) on decreasing T A
c , reaching a maximum γ max

σπ =
2.6 meV at T A

c � 29 K (i.e., x � 0.1), then decreases
linearly to finally saturate to 0.22 meV at T A

c = 15 K. At
T A

c = 33.5 K (that means x � 0.02), the value of the interband
scattering parameter used for the fit (γσπ = 1.0 meV) is
perfectly compatible with the theoretical predictions (γσπ =
1.1 meV) [5].

If the initial increase in γσπ on increasing the Al content
is easily explained in terms of out-of-plane distortions of the B
sublattice [5], the problem arises of explaining the decrease
in γσπ at higher Al contents that is necessary to reproduce
the observed gap trend in single crystals, which shows no
gap merging down to T A

c values as small as 12 K. Giving
a definitive answer to this problem certainly requires further
theoretical and experimental investigations. Here, a simple
interpretation can be anticipated. As discussed above, the
comparison of our experimental data to those of [12] and [18]
suggests that the initial increase in �π and the corresponding
increase in interband scattering are intrinsic effects of Al
doping in MgB2, as theoretically predicted. At the end of
section 3, we propose to interpret the decrease in �π for T A

c <

30 K (x > 0.1) as being due to the onset of inhomogeneity
in the Al content. As a matter of fact, in just the same
region the slope of δTc as a function of Tc (δTc being the
width of the superconducting magnetic transition) suddenly
increases. The simplified Eliashberg model that we have been
using (and which is described in detail in [35] as well as in
appendix B) is unsuited to taking these effects into account.
As a matter of fact, it is a mean-field model that treats the
doped MgB2 as a perturbation of the pure compound so that:
(i) Anderson’s theorem holds; (ii) the mathematical expression
for the matrix elements of the Coulomb pseudopotential and
of the coupling constant derived for pure MgB2 holds as
well. This may not be true any longer when the doping
concentration is too large: in this case the model itself probably
fails and a different, non-perturbative description should be
used. In this sense, the decrease in γσπ for T A

c < 30 K
necessary to fit the experimental �π values may not reflect an
actual property of the system. In other words, this decrease
might be necessary to mimic the effects of lattice stress and
inhomogeneity (possibly at a nanometric scale) in the local
Al content that, at the present moment, are not explicitly
included in the model. Incidentally, this situation is somewhat
similar to what we observed for heavily neutron-irradiated
MgB2 [4].

4 Actually, a very small change in the prefactor of the Coulomb
pseudopotential, μ0, was necessary as well to consistently reproduce the
correct T A

c values. However, μ0 varies from 0.031 at T A
c = 39 K to a

minimum of 0.027 reached when T A
c = 30 K.

5. Conclusions

In conclusion, we performed a large number of point-contact
Andreev-reflection measurements on segregation-free, state-
of-the-art single crystals of Mg1−xAlx B2 extending previous
PCAR results up to x = 0.32 and down to local critical
temperatures T A

c � 12 K. The local critical temperature
of each contact was directly obtained from the temperature
dependence of the conductance, while the gap amplitudes were
determined by a two-band BTK fit of its low-temperature
bias dependence. No merging of the energy gaps has been
observed down to the lowest T A

c and the persistence of two
gaps at the highest values of x has been confirmed by studying
the conductance curves in the presence of suitable magnetic
fields. When compared to the theoretical results obtained in the
framework of the two-band Eliashberg theory, the experimental
gaps show that the main effect of Al doping is to fill up
the bands, thus changing the DOSs at the Fermi level just
as expected from first-principles calculations. Nevertheless,
at an intermediate aluminum content, corresponding to T A

c
values between 18 K and 35 K, the �π(T A

c ) curve of our
single crystals shows clear deviations from the theoretical
behavior expected for pure band filling. Within the two-
band Eliashberg model already used to describe pure MgB2,
these deviations can only be reproduced by introducing a
proper amount (up to 2.6 meV) of interband scattering γσπ .
However, γσπ must be decreased again on further increasing
x to account for the experimental behavior of �π and the
absence of gap merging—at least down to T A

c = 12 K.
We propose to interpret this trend as resulting from two
competing phenomena: (i) the increase in interband scattering,
intrinsic to Al doping but clearly observable only when the
lattice stress due to compositional gradients is eliminated,
and (ii) the gradual onset of inhomogeneity when the Al
content is increased above a certain threshold (x � 0.1). At
high doping contents, inhomogeneity probably dominates, so
any theoretical description that does not take it into account
becomes less and less satisfactory. To overcome this problem,
which is likely to occur for any doped MgB2-based system, a
detailed experimental knowledge of the kind of disorder would
be required, as well as new and specific theoretical approaches.
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Appendix A. The two-band BTK fit

In this appendix we will give some additional details about the
two-band BTK fit and the fitting procedure. In the theoretical
model we used, the normalized conductance through the point
contact is expressed as

G = wπ Gπ + (1 − wπ)Gσ . (A.1)
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Each conductance is expressed in the form

Gi(E) =
∫ π/2
−π/2 σS,i(E, φ) cos(φ) dφ
∫ π/2
−π/2 σN,i (φ) cos(φ) dφ

(A.2)

where i = σ, π and

σN,i (φ) = cos(φ)2

cos(φ)2 + Z 2
i

(A.3)

σS,i(E, φ) = σN,i (φ)

× 1 + σN,i (φ)|Fi (E)|2 + (σN,i (φ) − 1)|Fi (E)2|2
|1 + (σN,i (φ) − 1)Fi (E)2|2 . (A.4)

The functions Fi (E) are given by

Fi (E) =
(E + i�i ) −

√
(E + i�i)2 − �2

i

|�i | (A.5)

and contain the broadening parameters �σ and �π as imaginary
parts of the energy [37]. Also note that these parameters
are independent of the gap values �i . This model is a two-
band generalization of the formulation by Kashiwaya et al
[38] that reduces to the simplest BTK formulation if one takes
�i = 0 and φ = 0 instead of integrating over the angle as in
equation (A.2).

In the modified BTK model [28, 29] � is a measure of the
intrinsic lifetime broadening. In our case, �σ and �π account
for both the intrinsic lifetime broadening and other effects—
related to the experimental technique and thus extrinsic—that
smooth the curves [19]. The most probable origin of the
additional broadening is inelastic quasiparticle scattering in the
vicinity of the contact, i.e. in a degraded layer covering the Ag
grains of the paint. As recently shown [26], this scattering
can be simply accounted for by increasing the broadening
parameter � in the BTK model. Zσ and Zπ depend on the
potential barrier at the interface. The weight of the π band
conductance, wπ , is taken as an adjustable parameter as well.

The range of variability of the seven fitting parameters is
actually limited by some physical constraints. For example,
for pure MgB2, wπ must vary between 0.66 (for pure ab-
plane tunneling) and 0.99 (for c-axis tunneling) [20]. Owing
to the non-perfect directionality of PCAR, we always took
0.68 � wπ � 0.75 for ab-plane current injection [19].
Moreover, wπ and the barrier parameters Zσ and Zπ must be
independent of temperature and magnetic field, so one is forced
to keep them constant in fitting the whole T or H dependence
of a conductance curve. In principle, �σ and �π should be
smaller than �σ and �π , respectively, and they must increase
on increasing the applied magnetic field [30].

Finally, the uncertainty on �π and �σ for a given curve
can be defined as the maximum range of gap values that allow
a good fit of the curve, when the other parameters are changed
too. To define which is the best fit, we minimized the sum of
squared residuals (SSR). This corresponds to minimizing the
chi square but does not require an estimation of the uncertainty
on the conductance for each point, which can vary from curve
to curve and is often difficult to estimate. We then allowed
a variation of the SSR of the order of 100% and determined
the corresponding range of parameters. In the best cases, as in

pure MgB2 (top panel of figure 4), �π is directly related to the
position of the peaks in the conductance curves, and �σ to the
shoulders on the sides. In this situation, the uncertainty on the
gap values is usually rather small (of the order of 0.3 meV).
For doped samples, clear conductance peaks are still present
but no structure at V > Vpeak is directly visible that would
reveal the presence of a second gap. Moreover, for heavily
doped crystals, the two gaps can be so close to each other
that the conductance peaks can occur at some intermediate
energy. In all these cases, a statistical test (the Fisher F-test)
can be used to determine whether the single-band or two-band
fit is preferable. In practice, one first determines the best-
fitting curves within the two models. If the SSR of the single-
band fit is smaller, this fit is certainly preferred. However, if
the two-band fit gives a smaller SSR value, the F-test allows
testing whether, within a fixed confidence level (usually 5%),
the improvement in the fit is not just due to the increase in
the number of parameters from 3 to 7. In the two bottom
panels of figure 4, the best-fitting single-band BTK curve is
represented by a dashed line. In the most ambiguous case
(x = 0.32), the SSR in the range [−10, 10] mV (excluding
the noisy regions of the curve) is 5.0 × 10−4 for the two-band
fit and 1.1 × 10−3 for the single-band one. The F-test shows
that, for any level of confidence, the two-band fit is preferable.
Another example, always in the high-doping limit (x = 0.32,
T A

c = 12.3 K), is reported in figure A.1. Here the best SSR in
the range [−10, 10] mV is 1.75 × 10−3 in the single-band case
and 9.67 × 10−4 in the two-band case. The F-test again shows
that the two-band fit is better for any level of confidence. The
panels (b) and (c) of the same figure give an idea of the spread
of the fitting parameters in different fits of the same curve; the
range of variation of the gaps is indicated by the gray strips. It
is clear in figure A.1(b) that �π is comparable or equal to �π .
This is a drawback of our experimental technique, due to the
aforementioned extrinsic broadening. It must be said, however,
that contrary to a widespread belief, the gap structures are
clearly visible in the conductance curves (and a reliable gap
measure can be extracted from their fit [19]) even if � = �,
provided that Z is not too small, as in our case. This can be
easily shown by calculating the conductance curves within the
modified BTK model.

Appendix B. Two-band Eliashberg equations

Let us start from the generalization of the Eliashberg
theory [39] for systems with two bands, which has already
been used with success to study the MgB2 system [2, 20, 40].
To obtain the gaps and the critical temperature within the
s-wave, two-band Eliashberg model one has to solve four
coupled integral equations for the gaps �i(iωn) and the
renormalization functions Zi(iωn), where i = σ, π is the band
index and ωn are the Matsubara frequencies. We included in
the equations the non-magnetic impurity scattering rates in the
Born approximation, γi j :

ωn Zi(iωn) = ωn + πT
∑

m, j

�i j(iωn − iωm)N j
Z (iωm)

+
∑

j

γi j N j
Z (iωn) (B.1)
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Figure A.1. (a) Normalized experimental conductance curve of a point contact in a crystal with x = 0.32 (◦) compared to the single-band
(- - - -) and two-band (——) BTK fits. (b) The values of � (•), � (�) and Z (�) for the π band, that allow fitting the same curve, in a series
of different fits. (c) The same as (b) but for the σ band. The variations in the gaps are qualitatively indicated by gray strips.

Zi(iωn)�i(iωn) = πT
∑

m, j

[�i j(iωn − iωm) − μ∗
i j(ωc)]

× θ(|ωc| − ωm)N j
�(iωm) +

∑

j

γi j N j
�(iωn) (B.2)

where θ is the Heaviside function, ωc is a cut-off energy
and �i j(iωn − iωm) = ∫ +∞

0 dω α2
i j(ω)F(ω)/[(ωn − ωm)2 +

ω2], N j
�(iωm) = � j(iωm)/

√
ω2

m + �2
j(iωm), N j

Z (iωm) =
ωm/

√
ω2

m + �2
j(iωm).

The solution of the Eliashberg equations requires the
following input: (i) four (but only three independent) electron–
phonon spectral functions α2

i j (ω)F(ω); (ii) four (but only
three independent) elements of the Coulomb pseudopotential
matrix μ∗(ωc); (iii) four (but only three independent) impurity
scattering rates γi j .

The four spectral functions α2
i j(ω)F(ω) were calculated

for pure MgB2 in [40]. For simplicity, we will assume here that
the shape of the α2

i j(ω)F(ω, x) functions does not change with
x , and we will only scale their amplitude with the electron–
phonon coupling constants λi j :

α2
i j F(ω, x) = λi j(x)

λi j(x = 0)
α2

i j F(ω, x = 0) (B.3)

where

λi j(x) = N j
N (EF, x)

N j
N (EF, x = 0)

λi j(x = 0). (B.4)

As far as the Coulomb pseudopotential is concerned, we
used the expression calculated for pure MgB2 [41], though
including the dependence of the densities of states at the Fermi
level Ni

N (EF, x) on the doping content x :

μ∗(x) =
∣
∣
∣
∣
μ∗(x)σσ μ∗(x)σπ

μ∗(x)πσ μ∗(x)ππ

∣
∣
∣
∣

= μ0 N tot
N (EF)

∣
∣
∣
∣

2.23
Nσ

N (EF,x)
1

Nσ
N (EF,x)

1
Nπ

N (EF,x)
2.48

Nπ
N (EF,x)

∣
∣
∣
∣ . (B.5)

As for the scattering rates, let us recall here that, according
to Anderson’s theorem, the intraband scattering parameters γii

have no effect on either Tc or the gaps, so they can be dropped.
We are thus left only with the interband scattering rates γσπ

and γπσ , which are however related through the equation

γπσ = γσπ

Nσ (EF)

Nπ (EF)
. (B.6)

This is why we can choose γσπ as the only adjustable
parameter. Moreover, it can be shown that only the interband
scattering can make the small gap increase while both Tc

and the large gap decrease (on increasing x), in the way
experimentally observed.

It is worth clarifying the relationship between the
broadening parameters �σ and �π in the BTK model and the
scattering parameters γσσ , γππ , γσπ in the Eliashberg theory.
The intrinsic BTK linewidth for a given band, e.g. �π , takes
into account all the scattering channels and is thus proportional
to γππ+γπσ . A direct relationship between the intrinsic �π and
γσπ cannot be established unless an independent determination
of the intraband scattering rates is obtained. Furthermore, in
our case the values of �π extracted from the fit contain an
‘extrinsic’ term (related to inelastic scattering in the vicinity
of the interface) in addition to the intrinsic linewidth. This
prevents a direct connection between the �i parameters of the
BTK model and the γi j of the Eliashberg theory.

Appendix C. A test of consistency

With reference to figure 7, it is worth noting that we
are fitting with the Eliashberg theory—including interband
scattering—data points that were obtained through a BTK
fit of experimental curves (and thus without taking into
account the possible effect of the interband scattering on the
curves themselves, which is theoretically expected not to be
negligible [42]). This approximation is hardly avoidable since
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N

Figure C.1. (a) Symbols: the theoretical (normalized)
Andreev-reflection conductance curve generated within Eliashberg
theory by using the parameters corresponding to the point at
T A

c = 30 K on the dashed curves of figure 7. The values of the
parameters are indicated on the left. Solid line: best fit of the curve
with the two-band BTK model. The fitting parameters are indicated
on the right. (b) Same as (a), but with the parameters corresponding
to the point at T A

c = 30 K on the solid curves of figure 7.

a fit of the conductance curves within the two-band Eliashberg
theory would be a very complex (if possible) task. For the
same reason, a direct proof of the reasonableness of the BTK
approach—that would be obtained by directly comparing the
results of the two fitting procedures, BTK and Eliashberg—
cannot be obtained. However, one can try to demonstrate that
a theoretical curve calculated within the two-band Eliashberg
theory (with given values of the gaps and a non-zero interband
scattering rate) can be fitted with the BTK model, and that the
gap amplitudes resulting from the fit are consistent with the
original ones.

Let us refer for clarity to the point where the π band gap is
maximum (see figure 7), which is also the most critical one. We
first calculated the gap functions �σ(ω) and �π(ω) (ω being
the energy) within the Eliashberg theory, with the parameters
corresponding to the two curves in figure 7 (dashed and solid
lines), which means in particular with γσπ = 0 and 2.40 meV,
respectively. Then, we calculated the corresponding Andreev-
reflection conductance curves at 4.2 K with no additional
smearing, and using the experimental values of Zσ and
Zπ [38]. The two curves are reported as open circles in
figures C.1(a) and (b), respectively.

Finally, we fitted these curves with the two-band BTK
model and compared the values of the gaps given by the
fit with those used to generate the curves. Note that the
amplitude of the theoretical curves in figure C.1 (�1.4) is
greater than that of the experimental ones, which are further

smeared by extrinsic broadening factors (e.g. related to the
specific measurement technique that we use [26, 43]). This
makes the test even stricter. The best-fitting BTK curves are
shown in figures C.1(a) and (b) as solid lines. It is clearly seen
that both of the gaps are rather well re-obtained, with an error
which is of the same order of magnitude as the experimental
uncertainty. This shows that the trend of the small gap �π

obtained by the BTK fit of the conductance curves is not
due to an artifact introduced by the BTK fit itself. In other
words, the enhancement of �π at intermediate T A

c values is
a real effect that would be obtained as well by fitting the
experimental conductance curves with the more appropriate
Eliashberg theory.
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